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Szabg Alava, and Kertez[Phys. Rev. B66, 026101(2002] considered two questions about the scale-free
random tree given by then=1 case of the BaralsaAlbert (BA) model(identical with a random tree model
introduced by Szymaski in 1987: what is the distribution of the node to node distances, and what is the
distribution of noddoads where the load on a node is the number of shortest paths passing through it? They
gave heuristic answers to these questions using a “mean-field” approximation, replacing the random tree by a
certainfixed tree with carefully chosen branching ratios. By making use of our earlier results on scale-free
random graphs, we shall analyze the random tree rigorously, obtaining and proving very precise answers to
these questions. We shall show that, after dividind\oighe number of nodesthe load distribution converges
to an integer distributionX with Pr(X=c)=2/[(2c+1)(2c+3)], ¢=0,1,2,..., confirming the asymptotic
power law with exponent-2 predicted by SzahoAlava, and Kertez. For the distribution of node-node
distances, we show asymptotic normality, and give a precise form fd@feh&om norma) large deviation law.

We note that the mean-field methods used by SzAlawva, and Kertsz give very good results for this model.
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I. INTRODUCTION vertex is the number of shortest paths passing through the
vertex. SzabpAlava, and Kertsz [6] study these questions
Recently there has been much interest in studying “scaleusing a “mean-field” approximation, i.e., consideringde-
free” random graphs as simple models for large-scale realterministic tree, with the same number of vertices in each
world networks arising in a wide variety of contexts. We uselayer that one expects in the random tree. Using this method,
notation from graph theory: nodes in the network being modthey give a heuristic derivation showing that the load distri-
eled correspond toerticesin the graph. Our graphs will bution will be asymptotically a power law with exponent
usually haveN vertices. Certain pairs of vertices are joined —2; the same power law has been obtained by analytic deri-
directly by edges; thelegreeof a vertex is the number of vation (still a heuristic, not a rigorous propin [13]. Szabo
edges incident with it. Following widespread, though per-Alava, and Kertez also derive asymptotic normalignd in
haps unfortunate, terminology, we say a random graph i§ct morg for the distribution of the root-node distances. For
scale freeif the (averagg degree distribution follows a node-node distances, they give no resuttespite appear-
power law, i.e., ifp,~k~7 for somey>0, wherep, is the ance$, though, as we shall see in the final section, a simple
limiting fraction of vertices with degrek, asN—o with k  heuristic derivation is possible using the work[81.

fixed. See[1,2] for extensive surveys of this rapidly devel- It turns out that the particular model under consideration
oping field, and[3] for a survey of the smaller amount of is simple enough that rigorous analysis is possible. We shall
mathematically rigorous work. show that, after dividing byN, the number of paths through

A special case of scale-free random graphs is that of random vertex converges in distribution to an integer val-
scale-free random trees. Graph theoretically, this is a particuied distributionX, with
larly simple case, as well as a very natural one. Since trees
are the minimal connected graphs, they are appropriate mod-
els for real-world networks in many contexts. For this rea- PI(X=C)= 2
son, scale-free trees have been studied recently by several (2c+1)(2c+3)
groups, in the form of then=1 case of the BaralsaAlbert
(BA) scale-free graph modé¢#]. As will shall note in the
next section, scale-free trees in fact predate the BA model bfor c=0,1,2,.... Also, we shall show that the distribution of
more then a decade; they were introduced in a different comode-node distances is asymptotically normal with mean and
text and under a different name by Szyrski{5] in 1987. variance logN, and give bounds on the distribution accurate
Since scale-free trees arise in the context of modellingo within a factor®(1) well into the tails.(See theorem ].
communication networks, for example, shortest paths in In the next section we describe exactly the model, and
these trees are a natural object of study. Szab@va, and note that this particular model was introduced in a different
Kertesz [6] considered the following two questions for the context, in a paper not widely known in the physics commu-
m=1 case of the BA model. First, what is the asymptoticnity. In the subsequent two sections we prove our results on
distribution of shortest path lengths? Secondly, what is théoad distribution and node-node distances. At the end of each
distribution of the “load” on the vertices? Here theadona  section, we compare our results with existing heuristic re-
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sults, especially those §8], and extrapolations from them; it branches of plane-oriented recursive trees are again plane-
turns out that the mean-field heuristic gives very good resultsriented recursive trees. Random plane-oriented recursive
in these cases. trees were introduced by Szynskn[5] in 1987 (although
with a slightly different treatment of the rgoand have been
studied since in several papers, includ[ibg9—11.
Il. THE MODEL Throughout the paper, by, we shall mean the random
Barabai and Albert{4] introduced one of the first models Plane-oriented recursive tree withvertices, with vertex set
for the growth of a scale-free graph such as the web or int1.2,...N}, or, equivalently, the BarabaAlbert scale-free
ternet graph. They fix an integen=1. Starting withm, random tree given bga precise version othe casen=1 of
vertices and no edges, vertices are added one at a time, aitf model introduced if4]. Formally, T, has a single vertex
each new vertex is joined tm old vertices, chosen “with 1 and no edges. Fa¥=2, givenTy_, the treeTy is con-
probabilities proportional to their degrees.” As noted[#],  Structed by adding a new verték and joining it to an old
this is not a complete description of a model: for example, itvertexv, 1sv<N-1, with
is not clear how the process should get started, since as writ- _
ten all degrees are initially zero. Far=2 there is a much Pro=])= dy-1(1)

more serious problerntsee[3,7]), but this need not concern 2N-3
us here. A precise model fitting the rough description of

Barabai and Albert is given if7] (see alsd3]). While this  for j=2, and

precise model has many nice featu(gsch as a simple static

description, for the special casm=1 it is a little unnatural, Pr{v=1)= dn-1(1)+1
in that it produces a forest with loops, rather than a tree. 2N-3

Form= 1, the only ambiguity in the BarabaAlbert (BA) . B
model is how to get started. Having started, at each stage heredy-1(j) is the degree of the vertgsin the treeTy_; .
new vertex is added, and joined to an old vertex selected We shall say that a vertexjoined to a vertexv is achild
with probability proportional to its degree. Perhaps the mosef W if v>w (sov was added latgr and theparentof w if
common way to get going is to start with one vertex, thev <W.
root, which has an extra “virtual” edge coming in to it from
nowhere, so the degree of the root at the start counts as 1. Ill. LOAD SCALING
Thus at timet, when there are vertices, although there are

t—1 edges in the tree, the sum of the degrees is taken to be The first question we consider here, raised by Szabo
2(t—1)+1=2t—1. Alava, and Kertez in [6] and considered also by Goh,

This precise version of the=1 case of the BA model is K&hng, and Kim in[12], and the same group together with
not at all new: it is exactly the standard model for random©n @nd Jeong ir13], concems the distribution of vertex
plane-oriented recursive trees. A tree on a labeled vertex siq2ds in the tredy . Given a general graph witN vertices,
V={1,2,..1} is recursiveif each vertex other than 1 is joined [OF €ach pairix,y} of distinct vertices in the graph choose a
to exactly one earlier vertex. In other words, the tree can b&hortest pathS,, between them(uniformly at random if
grown by adding the vertices in numerical order, joiningf[here IS more t_ha_n 0|)n_eA path passes through vertexu if
each new vertex to some old vertex. Two natural ways oft contaln_SU in its interior, i.e., not as an end_ point. Tead
constructing random recursive trees have been consideredfv) atuv is the number of the patt, , passing through.
for the simplest, a “uniform random recursive tree” is grown There are seyeral minor variations on th|§ definition, for
one vertex at a time by joining the new vertex to an old®xample, counting also shortest paths ending abr, for
vertex chosen uniformly at random. See, for example, th&ach paix, y generating more than one shortest path, assign-

survey[8]. To introduce the second, we need one more defil"d Weights summing to 1 to these paths in one of several
nition. ways. In a tree, the situation is simpler, as there is a unique

A plane-orientedtree is one with a cyclic order on the Shortest path between each pair of vertices. As we do not

edges meeting each vertex, induced, for example, by drawingPunt paths ending at, if the components offy—v, the

the tree in the plane. Suppose that a new vestexadded to ~ 9raph formed fromTy by deleting the vertex, have

a plane-oriented recursive trdeand joined to an existing Sti.---.S Vertices, therl (v)=ZX;;s;s;. Now for almost all
vertexw, wherew has degreel. Then there arel different ~ Verticesv in Ty one of these componenthat containing the
ways in which the new edge can meet the VeMexjepend_ I’OO'[) is much |argel’ than the others. Suppose tahb.aSC(U)

ing on the place in which this edge is inserted into the cyclicdescendants ifry , where the descendants of a vertex are its
order. Thus the number of different plane-oriented recursivé&hildren, its children’s children, and so on. Then the compo-
trees that may result i&. Hence, auniformly selectefiran- ~ hent of Ty—v containing the root has si2¢—1—c(v). (We
dom plane-oriented recursive tree may be obtained by addingave defined the descendantsvado as to exclude itself.)
vertices one at a time, joining each new vertex to an old-urthermore, the load atv is c(v)[N—-1-c(v)]
vertex selected with probability proportional to its degree. In+O(c(v)?). Here the first term counts paths from descen-
fact, as in the BaralsaAlbert model, the standard definition dants ofv to other vertices. The second term accounts for the
treats the first vertex, the root, differently, effectively imag- (°")) paths between descendantsyofnone, some, or all of
ining an edge from the root going off to infinity. In this way these may pass through. In particular, if c(v)=0(N),
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which holds for all but a few early vertices, then we haveTogether with the boundary conditions thaf.=0 for c

[(v)~c(v)N. =1 and\, y=1, the above equations easily imply that
The quantities(v) are natural in their own right, and it is
not surprising that their distribution has already been given - 2N—-1
exactly by Mahmoud, Smythe, and Szyrsknin [11]: the )‘N'C_(2C+ 1)(2c+3) @
probability that inTy the vertexk has exactlyc descendants
is for c<N—2, while Ay y-;=1 (at time N the root hasN
—1 descendantsand\ =0 for c=N.
1-3---(2¢—3)(2c—1)(2k—2)(2k)--(2n—2c—4) Fixing N and varyingc, Eq. (2) gives theload scalingin
(2k—1)(2k+1)---(2n—3) the scale-free tredy: the expected proportion of vertices
having exactlyc descendants, and hence load approximately
n—k). (1)  CN, is exactly
c
. , . : ) 2—1N
This expression can easily be proved by a direct combinato- _
(2c+1)(2c+3)

rial argument, or by induction. For the load distribution we
wish to know the expected number of vertices wittlescen- o . .
for 0<c<N-2. This gives a much more precise version of

dants. This can be obtained by summing EQ.overk, but . . o
can also be obtained by the following much simpler directthe inverse square power-law described8i the heuristic

method. derivation used there gives only the asymptotic formcas

When a new vertel=2 is added to the tre€,_,, what —oo, since vertices far enough down in the tree that the
is the probabilityp, thatN becomes a descendan} c,)f a given average branching factor is less than one are omitted. Since
old vertexp =272 Iv:rom the definition of the model. the an- such vertices are a constant proportion of all vertices, they
swer isS d(xj/(2N—3) whered(x) is the degreé ofin  Must be included to obtain the exact formula given above.

T anXdESSis the set con’sisting of and all its descendants Note that the exponent of 2 is the same as that given with
thl);vl,Sinduces a subtree dfy_; with |S|=1-+c(v) verti " a heuristic derivation if13], rather than the value=2.2
ces, and hence(v) edges jgiaéd o the rest 3%, ; by a originally suggested by some of the same authorfd . It

) . is also clear that th&l*®logN scaling suggested if12] for
sir;gil(ev)efge,sothat fromu to its parent. ThusZy.sd(x) the load of the root is not correct for this model, and that the

correct answer i®(N?): with constant probability the ver-
2c(v)+1 tices 2 and 3 are each joined directly to the root, and on
pv=m average each ha8(N) descendants, giving ord&? paths
passing through the root.

This formula is also valid it=1.

Let us writen,(c) for the number of vertices if; having IV. SHORTEST PATHS
c descendants. Far=1 the number of such vertices Ty is
the same as iy_; unless either verteN becomes a de-
scendant of an existing vertex withdescendants, or vertex i i
N becomes a descendant of an existing vertex witht 1€ lengths of the}) paths inTy. (As Ty is a tree, every
descendants. The former event has probabiljec ~ Path is the shortest path between its end vertigesfor load
+1)/(2N=3)]ny_4(c), and the latter probability]2(c scaling, this d|§tr|b_ut|on is 'studled heurls'_ucally by S'zabo
—1)+1]/(2N=3))ny_4(c—1). Thus, forc=1 Alava, and Kertsez in [6] using the mean-field approxima-

' ' tion. It is stated irff 6] that the distribution of distances

We now turn to the main topic of this paper, the distribu-
tion of the distances between vertices, i.e., the distribution of

+ had previously been analyzed precisely; in fact this is not the
E(nn(e)|[Ty-1)=nn-1(c)— o>N—3 "™-1(€) case. As we have noted in the Introduction, the random tree
Ty, i.e., the casan=1 of the Barabsi-Albert model, is
2c—1 nothing other than a random plane-oriented recursive tree, or
toN=3 Nn-1(Cc—1). “nonuniform random recursive tree” as previously studied in

[5,10,11,14, among other papers. This has very different
Writing A . for E(ny(c)) and taking the expectation of both properties from ainiformrandom recursive tree, where there

sides of the equation above, we find that is no preferential attachment. The references giveibjrare
indeed to rigorous studies of certain properties of random
2ct1 2c—1 recursive trees. However, onfg5], deals entirely with the
AN.e=AN-107 2N—3 AN-1ct 2N—3 AN-1c-1- uniform case, while anothelr16], gives for the nonuniform

case only the distribution of distances from the rddtis
For c=0 the only difference is that the new vertex alwaysdistribution was given earlier ifiL0].) The referenc¢14] for
has 0 descendants, so the diametefmeaningmaximuniength of a shortest path, as
is usual in graph theory, as opposedaweragelength is
N _ 1 N 1 essentially correct; this paper shows that the height of the
NOTAN=L0 5N g N-10T = tree (largest distance from the rgois almost certainly[ 1

036114-3



B. BOLLOBAS AND O. RIORDAN

+0(1)](2y) tlogN for vy the solution ofye' ™ 7=1. It is easy
to see that the method gives the diameter [k
+0(1)]y *logN. Note that this valuey~*=3.591... is dif-
ferent from the incorrect value 4v2/2=1.707... given in
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This result is the core of our proof of theorem 1. Most of
the rest is a straightforwartut somewhat tedioliestima-
tion of the resulting sums.

Proof of Theorem 1In the case of paths, which is all we

[6]. The difference is actually not from the mean-field ap-consider here, formuld5) simplifies somewhat: the only
proximation, which turns out to give the right answer, usingpaths P which may appear inTy are of the form

the method suggested [if]. The mistake irf6] is to use the
normal approximatioritheir Eq.(7)] to their Eq.(6), which
is not valid this far out, and to forget to multiply by two.

avq - vsCW; - -wqb, wherec is the last common ancestor of
aandb, andav, --vsc andbw;---w;c are paths down the
tree, so, for examplea>v,;>--->v>c. (Here we adopt

Concerning the distribution of distances, despite the statethe nonstandard convention that the root of a tree is at the
ment in[6], to the best of our knowledge the distribution of bottom) We shall assume without loss of generality that

distances inTy, the casem=1 of the BA model, has not
previously been rigorously determined.

Here we shall give &cumbersomeexact formula for the
expected number of paths of lendtlior anyk, and a simple

<b. Note thatc=<a, with c=a possible. To apply Eq5) it
is convenient to regroup the vertices Bf writing V(P)
={cuLuU{alURU{b}, wherelL is the set of vertices of
P with c<v<a, andR the set witha<v<h. Every vertex

description of the distribution on two scales, one giving theof P has in-degree 0 or 1 exceptwhich has in-degree @f

asymptotic form of the central part of the distribution, in-

cluding almost all paths, and one the réamd form of de-
cay of the tails. Let us writee,=E,(N) for the expected
number of (shortest paths in Ty of length k, so
S EdN) = ().

Theorem 1 Suppose thak=k(N) is such thate= a(N)

=k/logN is bounded above and below by constants strictly

between 0 an@. Then
Ek:®(Nl+alog(e/a)/ /lOgN ), (3)

as N—oo. Furthermore, if k=logN+xylogN where x
=X(N)=o0(ylogN), then

N2 1

E,~ ——e
“ 2 27logN

—x212

(4)

asN—o,

Note that the second statement says that the distribution

a#c). Also, Cp(t), the number of edges &f from vertices
beforet to t and vertices after, is 2 iE<t=a, 1 if a<t
=<b, and zero otherwise. Hence, provideea, the prob-
ability that P is present inTy is

pp=p(a,b,c,L,R)
1 2t—1

=2

ic{ablULURc 21 =3 c<t=ateL 2t—3
2t—2

X v
a<t<b,t¢R 2t—3
This can be rewritten as

1
2i—1

2t—-1 1
2t—3 2a—-1

[]

ielL

[1

ieR

p(a,b,c,L,R)=2 H

c<t=a

1
2i—2°

2t-2 1

Xa<[sb 2t_3 2b_2

(6)

of path lengths is asymptotically normal with mean and vari-

ance log\. Our main tool will be a result frofi3], based on
the work in[7], giving the exact probability that a given
graphSis present as a subgraph Bf,. Here we mean that
the specific edges i§ occur inTy, not thatT contains a
subgraph isomorphic t& Although the result and its proof
are simple, stating the result requires some definitions.
Let Sbe any graph otv={1,2,...N} which could possi-
bly occur as a subgraph dfy. Thus, inS every vertex is
joined to at most one “earlier” vertex, wherei is earlier
thanj meand <j. Considering each edgjeof Swith i<j as
oriented fromj to i, let V*(S) be the set of vertices sending
out at least one edge, aiWd (S) the set of vertices receiving

(The scope of each product is the fraction immediately fol-
lowing it.) If a=c then the initial 2 and the factor 1/62
—1) must be omitted, ax has in degree one, and
=c¢ V' (P). Note that the patR is not quite specified by,

b, ¢, LandR: in P each vertex irR must lie on the subpath
from ¢ to b, but each vertex in. may be on either this
subpath, or the one fror to a. Thus, not that it is very
useful, we have the following exact formula for the expected
numberE, of paths of lengthkin Ty:

Ey= > 2ltlp(a,b,c,L,R)

1sc<a<b=N

at least one edge. These sets are, of course, in general not

disjoint. Furthermore, fore V= (S) let d&'(i) be the number
of edges ofS coming in toi. Finally, for 1<t<N let C4(t)
count the number of edgésof Swith i<t andj=t. Then,
corollary 22 of[3] states that the probability th&C T, is
given exactly by

ps= Il d¥(i)!

eV (9) i

I1

eV (9)

I1

teVT(S)

2i—3

Cs(t)
(1+ o 3).
5

+ >
1<a<b Rc{a+1,.p—1}|R|=k-1

p(a,b,a,d,R),

where the second sum in the first term is over all péitR)
with LC{c+1,...a—1}, RC{a+1,..p—1} and|LUR|=k
-2.

We now aim to find simple descriptions of the distribution
of shortest path lengths at various scales. Until the end of the
proof we fix a small positivee. We shall be prepared to
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ignore multiplicative errors smaller thantle in E,, as well The corresponding term fdr is a little trickier to handle:

as absolute errors smaller thAiA™ €. In particular, for anyk since c=0(1), a fraction O(l/logN) of the sum

we shall ignore the at most paths inTy of lengthk for  X7- C+1[1/(2| 1)] comes from each of the first few terms.
which c=a. (There is at most one such path downward inWhen we raise this sum to a pow@i(log N) this means that
the tree from each upper endvertex Thus we have a constant fraction of the result comes from repeated terms.

In particular, we see that
E= 2 2 2p(ab,c,L,R)+O(N),

lsc<a<b L,R

DI & B
with the same conditions ob andR as before. Now in the Lo{er..a-thlLi=ky ick

formula (6) the first product telescopes, and is justa(2 1 (3l 1 \k [log(a/c)]
—1)/(2c—1). The third product does not telescope, but is = nlﬁ(- 2 -1 N ok
equal to Jb/a(1+0O(1/a)). Thus if a=N¢, c<a and |R| 1 \i=c+l v

=0O(logN) then where the “error factors™s; are functions ofc, a andk,,

2a—1 1 and usinga>N¢, c=0(1), andk;=0O(logN) we havez,
p(a,b,C,L,R)"'ZZC_lZa—_l ﬂ2:®(1).
The approximation above is more than enough to give our
1 1 1 first result. Indeed, combining the formulas above,
<l 5= a5 1L 5= .
1
E ~ -
~ . _1 _1 _ 2 (2c—1) \/%kﬁsz:k—z 2
(2c—1)\Jabicl 2i—1icr2i—-2 ) )
[Iog(b/a)] 2[2 log(a/c)]*t Lie

As there are onlyO(N'"€) paths witha<N¢ or with b 252Kk, k! FONTS. (@)

—a=N¢, we can consider only terms with b—a>N¢. We

are only interested in the range whére ® (logN), sinceTy ~ Thus, recalling that),= ®(1), thebinomial theorem implies
has diameterO(logN), and there are very few paths of that

lengtho(logN). It follows that we need only consider terms

in the sum wheree=0(1). In fact, from the form of the * 1 [log(ab/c?)]< 2
sums involved, the contribution tB, from terms with in- Ex=0 E K K—2)] +O(N"e).
creasing values of decreases exponentially asncreases; cyab ( )!

we shall return to this later. . . . -
From now on we only consider terms with<t<a<b The rest is a matter of straightforward calculation. Fixang

wherea, b—a>N¢ andc is at most some sufficiently large 2ndb, bounding the sum

constantC. We write=* for sums over such triples. We also [log(ab/c?)]k 2

assume thak= 0 (logN). As noted above, we then have Loglabre)1” =

1<c<C c
. 1
= S — 2k1 above and below by suitable integrals, we see that this sum is
(2c—1)ab k+i=k-2 O ([log(@b) < Y/k). Moreover, as log{h) and k are both
1 0 (logn), terms with increasing values afdecrease expo-
> . nentially, providedc is not too large. This justifies our re-
Lcfe+1,. a1} L=k, ieL 2i—1 striction toc=0(1). Wethus have
X > e 5 +O(N'™9). 1 k-1
RC{a+1. b1} [Ri=k, icR 2~ Ex= Xk—1)1 1<a§4b<N \/—[|09 ab)]
It is easy to see that +O(NIHe),
.L Again the sum can be approximated within a constant factor
RC{a+1,..b-1}|RI=k, icR 2i—2 by an integral, namely by
R  [log(b/a)]*e 1 (1 [log(N2xy)]<~ !
kz! =% 21—2 2k2k | ! Nf f —\/X—y dXdy
sincek,=0O(logN), so when the power of the sum is ex- =0 (N[log(N?)]* H=0(2*N(logN)*~ 1),
panded the terms which are products of distinct summands
dominate. usingk=0 (logN). This gives
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B (logN)k—1 Lie [ elogN ittt
Ek—(a(NW +O(N*), n(l)=0(n'?) 20-1) (11
or, sincek=0(logN),
is obtained for the number of vertices at distahdem the
(logN)* Lie root. This formula is(6) in [6], specialized to the particular
Ex=O| N— 7] +O(N""). ®  model; in particular, we have substituted the vaiien'?)

for b(0)=I(1). It is also noted ir{6] that the distribution is
Using Stirling’s formula, asymptotically normal, with mean and variance g
(again specializing the more general resulig) .

N elogN | No corresponding formula is given i6] for node-node
Ekz(—( K ) +O(NYe), distances; indeed, it is stated that, in contrast to the root-node
VlogN distances, “Eq(13) and the quantities it is constructed out of
Writing k=« logN, for 0<a<e, taking e small enough we turn out to be too complex to handle without numerics.”
obtain However, it is note_d later that the main contrlbut_lon arises
from paths passing through the root, leading to a
“convolution-type distribution.” This heuristic is a good one:
Ex=0 (N &)/ logN), nearly all paths pass very close to the root. In particular,
o asymptotic normality of the node-node distance distribution
providing Eq.(3). does follow(heuristically, but this is a very strong heurigtic
Having proved Eq(3), we have shown that the bu,'\‘k of the convolution of two normal distributions is normal.
the distribution is at logy, i.e., thatall but o(N?) of the (3) Actually, the heuristic goes much further: rather than use

paths have Iengthklog N. One can check that fdein this the approximatior{ll)' starting from Eq(lo) we obtain
range, the error functiom,= 7,(c,a,k) satisfiesy,(c,a,k)
~ n3(c,loga/logN), where 53 is continuous in the second

argument. Following through the calculation from K@) to (logN/2)'~1
Eq. (8), one can check that the implicit constant in 1B¢&) n(l)=b(0) W
notation in Eq(8) is almost constant and so far-logN we '
have
Since
(logN)¥
Bk~ oN— 57—, 9)
ATAT (A+A)

for some absolute constant Summing ovelk in the range

‘.l sl I
k~logN, we count almost all of theb) paths, so s E S t
(N - E E,~ 7N2 by the binomial theorem, this suggests by convolution that
2] kJogN K ' the number of paths of lengthwill be given essentially by
Thus = 1/2. The formula given in Eq4) now follows from
Eq. (9) using Stirling’s formula, for example. O (logN)¥
O(N) i

A. Comparison with heuristics

The distribution of shortest path lengthsTr, is studied

by Szabg Alava, and Kertsez [6] using the mean-field ap- [We ignore additive errors dd(1) in the path length.This
proximation. It turns out that this heuristic gives very goodis more or less the form given in theorem 1, apart from the
results; unfortunately, only numerical results are givef6ilp ~ normalization. And if, as iff6], one corrects the heuristic by
despite the impression given in the abstract, introduction aniormalizing [the heuristic, together with the real value of
conclusions. In the body of the paper, the distribution ofb(0), suggests this should not be necessary, but it seems
root-node distances is given, in greater generality. Using Ecgensible anywaly this agreement is very striking. Note, how-
(5) in [6], i.e., ever, that from the heuristic we have no idea how far the

agreement will extend; from our precise work we see that the
logN 10 (heuristically constantimplicit constant in thed notation in
T (10 theorem 1 does actually vary &svaries on the log\ scale;

this is due to the fact that paths not passing through the root
whereb(l) is the mean-field number of children of a vertex matter very much when looking at the much smaller numbers
at distancd from the root, the approximation of very short paths, for example.

N -

b(l)=
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B. General graphs paths are concerned, the general case behaves very differ-

Let us conclude by very briefly considering the genera|ently from the tree casm=1. Thg general case is likely to
casem=2 of the BA model, giving rise to a scale-free ran- P& much harder to analyze precisely.
dom graph that is not a tree. A precise version of this model,
the LCD model, was introduced [] (see alsd3]), where it
was shown that fom=2 the diameter is asymptotically This research was supported by NSF Grant No. ITR
logN/log logN rather than logN. Thus, as far as shortest 0225610 and DARPA Grant No. F33615-01-C-1900.
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