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Shortest paths and load scaling in scale-free trees
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Szabo´, Alava, and Kerte´sz @Phys. Rev. E66, 026101~2002!# considered two questions about the scale-free
random tree given by them51 case of the Baraba´si-Albert ~BA! model ~identical with a random tree model
introduced by Szyman´ski in 1987!: what is the distribution of the node to node distances, and what is the
distribution of nodeloads, where the load on a node is the number of shortest paths passing through it? They
gave heuristic answers to these questions using a ‘‘mean-field’’ approximation, replacing the random tree by a
certainfixed tree with carefully chosen branching ratios. By making use of our earlier results on scale-free
random graphs, we shall analyze the random tree rigorously, obtaining and proving very precise answers to
these questions. We shall show that, after dividing byN ~the number of nodes!, the load distribution converges
to an integer distributionX with Pr(X5c)52/@(2c11)(2c13)#, c50,1,2,..., confirming the asymptotic
power law with exponent22 predicted by Szabo´, Alava, and Kerte´sz. For the distribution of node-node
distances, we show asymptotic normality, and give a precise form for the~far from normal! large deviation law.
We note that the mean-field methods used by Szabo´, Alava, and Kerte´sz give very good results for this model.
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I. INTRODUCTION

Recently there has been much interest in studying ‘‘sc
free’’ random graphs as simple models for large-scale r
world networks arising in a wide variety of contexts. We u
notation from graph theory: nodes in the network being m
eled correspond tovertices in the graph. Our graphs wil
usually haveN vertices. Certain pairs of vertices are joine
directly by edges; thedegreeof a vertex is the number o
edges incident with it. Following widespread, though p
haps unfortunate, terminology, we say a random graph
scale free if the ~average! degree distribution follows a
power law, i.e., ifpk;k2g for someg.0, wherepk is the
limiting fraction of vertices with degreek, asN→` with k
fixed. See@1,2# for extensive surveys of this rapidly deve
oping field, and@3# for a survey of the smaller amount o
mathematically rigorous work.

A special case of scale-free random graphs is that
scale-free random trees. Graph theoretically, this is a part
larly simple case, as well as a very natural one. Since t
are the minimal connected graphs, they are appropriate m
els for real-world networks in many contexts. For this re
son, scale-free trees have been studied recently by se
groups, in the form of them51 case of the Baraba´si-Albert
~BA! scale-free graph model@4#. As will shall note in the
next section, scale-free trees in fact predate the BA mode
more then a decade; they were introduced in a different c
text and under a different name by Szyman´ski @5# in 1987.

Since scale-free trees arise in the context of model
communication networks, for example, shortest paths
these trees are a natural object of study. Szabo´, Alava, and
Kertész @6# considered the following two questions for th
m51 case of the BA model. First, what is the asympto
distribution of shortest path lengths? Secondly, what is
distribution of the ‘‘load’’ on the vertices? Here theload on a
1063-651X/2004/69~3!/036114~7!/$22.50 69 0361
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vertex is the number of shortest paths passing through
vertex. Szabo´, Alava, and Kerte´sz @6# study these question
using a ‘‘mean-field’’ approximation, i.e., considering ade-
terministic tree, with the same number of vertices in ea
layer that one expects in the random tree. Using this meth
they give a heuristic derivation showing that the load dis
bution will be asymptotically a power law with expone
22; the same power law has been obtained by analytic d
vation ~still a heuristic, not a rigorous proof! in @13#. Szabo´,
Alava, and Kerte´sz also derive asymptotic normality~and in
fact more! for the distribution of the root-node distances. F
node-node distances, they give no results~despite appear-
ances!, though, as we shall see in the final section, a sim
heuristic derivation is possible using the work in@6#.

It turns out that the particular model under considerat
is simple enough that rigorous analysis is possible. We s
show that, after dividing byN, the number of paths throug
a random vertex converges in distribution to an integer v
ued distributionX, with

Pr~X5c!5
2

~2c11!~2c13!

for c50,1,2,... . Also, we shall show that the distribution
node-node distances is asymptotically normal with mean
variance logN, and give bounds on the distribution accura
to within a factorQ~1! well into the tails.~See theorem 1.!

In the next section we describe exactly the model, a
note that this particular model was introduced in a differe
context, in a paper not widely known in the physics comm
nity. In the subsequent two sections we prove our results
load distribution and node-node distances. At the end of e
section, we compare our results with existing heuristic
©2004 The American Physical Society14-1
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sults, especially those of@6#, and extrapolations from them;
turns out that the mean-field heuristic gives very good res
in these cases.

II. THE MODEL

Barabási and Albert@4# introduced one of the first model
for the growth of a scale-free graph such as the web or
ternet graph. They fix an integerm>1. Starting withm0
vertices and no edges, vertices are added one at a time
each new vertex is joined tom old vertices, chosen ‘‘with
probabilities proportional to their degrees.’’ As noted in@7#,
this is not a complete description of a model: for example
is not clear how the process should get started, since as
ten all degrees are initially zero. Form>2 there is a much
more serious problem~see@3,7#!, but this need not concer
us here. A precise model fitting the rough description
Barabási and Albert is given in@7# ~see also@3#!. While this
precise model has many nice features~such as a simple stati
description!, for the special casem51 it is a little unnatural,
in that it produces a forest with loops, rather than a tree.

For m51, the only ambiguity in the Baraba´si-Albert ~BA!
model is how to get started. Having started, at each sta
new vertex is added, and joined to an old vertex selec
with probability proportional to its degree. Perhaps the m
common way to get going is to start with one vertex, t
root, which has an extra ‘‘virtual’’ edge coming in to it from
nowhere, so the degree of the root at the start counts a
Thus at timet, when there aret vertices, although there ar
t21 edges in the tree, the sum of the degrees is taken t
2(t21)1152t21.

This precise version of them51 case of the BA model is
not at all new; it is exactly the standard model for rando
plane-oriented recursive trees. A tree on a labeled vertex
V5$1,2,...,t% is recursiveif each vertex other than 1 is joine
to exactly one earlier vertex. In other words, the tree can
grown by adding the vertices in numerical order, joini
each new vertex to some old vertex. Two natural ways
constructing random recursive trees have been conside
for the simplest, a ‘‘uniform random recursive tree’’ is grow
one vertex at a time by joining the new vertex to an o
vertex chosen uniformly at random. See, for example,
survey@8#. To introduce the second, we need one more d
nition.

A plane-orientedtree is one with a cyclic order on th
edges meeting each vertex, induced, for example, by draw
the tree in the plane. Suppose that a new vertexv is added to
a plane-oriented recursive treeT and joined to an existing
vertex w, wherew has degreed. Then there ared different
ways in which the new edge can meet the vertexw, depend-
ing on the place in which this edge is inserted into the cyc
order. Thus the number of different plane-oriented recurs
trees that may result isd. Hence, a~uniformly selected! ran-
dom plane-oriented recursive tree may be obtained by ad
vertices one at a time, joining each new vertex to an
vertex selected with probability proportional to its degree.
fact, as in the Baraba´si-Albert model, the standard definitio
treats the first vertex, the root, differently, effectively ima
ining an edge from the root going off to infinity. In this wa
03611
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branches of plane-oriented recursive trees are again pl
oriented recursive trees. Random plane-oriented recur
trees were introduced by Szyman´ski @5# in 1987 ~although
with a slightly different treatment of the root! and have been
studied since in several papers, including@5,9–11#.

Throughout the paper, byTN we shall mean the random
plane-oriented recursive tree withN vertices, with vertex set
$1,2,...,N%, or, equivalently, the Baraba´si-Albert scale-free
random tree given by~a precise version of! the casem51 of
the model introduced in@4#. Formally,T1 has a single vertex
1 and no edges. ForN>2, givenTN21 , the treeTN is con-
structed by adding a new vertexN and joining it to an old
vertexv, 1<v<N21, with

Pr~v5 j !5
dN21~ j !

2N23

for j >2, and

Pr~v51!5
dN21~1!11

2N23
,

wheredN21( j ) is the degree of the vertexj in the treeTN21 .
We shall say that a vertexv joined to a vertexw is achild

of w if v.w ~so v was added later!, and theparentof w if
v,w.

III. LOAD SCALING

The first question we consider here, raised by Sza´,
Alava, and Kerte´sz in @6# and considered also by Goh
Kahng, and Kim in@12#, and the same group together wi
Oh and Jeong in@13#, concerns the distribution of verte
loads in the treeTN . Given a general graph withN vertices,
for each pair$x,y% of distinct vertices in the graph choose
shortest pathSx,y between them~uniformly at random if
there is more than one!. A pathpasses througha vertexv if
it containsv in its interior, i.e., not as an end point. Theload
l (v) at v is the number of the pathsSx,y passing throughv.

There are several minor variations on this definition,
example, counting also shortest paths ending atv, or, for
each pairx, ygenerating more than one shortest path, ass
ing weights summing to 1 to these paths in one of seve
ways. In a tree, the situation is simpler, as there is a uni
shortest path between each pair of vertices. As we do
count paths ending atv, if the components ofTN2v, the
graph formed fromTN by deleting the vertexv, have
s1 ,...,sr vertices, thenl (v)5( i , j sisj . Now for almost all
verticesv in TN one of these components~that containing the
root! is much larger than the others. Suppose thatv hasc(v)
descendants inTN , where the descendants of a vertex are
children, its children’s children, and so on. Then the comp
nent ofTN2v containing the root has sizeN212c(v). ~We
have defined the descendants ofv so as to excludev itself.!
Furthermore, the load atv is c(v)@N212c(v)#
1O„c(v)2

…. Here the first term counts paths from desce
dants ofv to other vertices. The second term accounts for
( 2

c(v)) paths between descendants ofv; none, some, or all of
these may pass throughv. In particular, if c(v)5o(N),
4-2
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SHORTEST PATHS AND LOAD SCALING IN SCALE- . . . PHYSICAL REVIEW E 69, 036114 ~2004!
which holds for all but a few early vertices, then we ha
l (v);c(v)N.

The quantitiesc(v) are natural in their own right, and it i
not surprising that their distribution has already been giv
exactly by Mahmoud, Smythe, and Szyman´ski in @11#: the
probability that inTN the vertexk has exactlyc descendants
is

1•3¯~2c23!~2c21!~2k22!~2k!¯~2n22c24!

~2k21!~2k11!¯~2n23!

3S n2k
c D . ~1!

This expression can easily be proved by a direct combin
rial argument, or by induction. For the load distribution w
wish to know the expected number of vertices withc descen-
dants. This can be obtained by summing Eq.~1! over k, but
can also be obtained by the following much simpler dir
method.

When a new vertexN>2 is added to the treeTN21 , what
is the probabilitypv thatN becomes a descendant of a giv
old vertexv>2? From the definition of the model, the a
swer is(xPSd(x)/(2N23), whered(x) is the degree ofx in
TN21 , andS is the set consisting ofv and all its descendants
Now S induces a subtree ofTN21 with uSu511c(v) verti-
ces, and hencec(v) edges, joined to the rest ofTN21 by a
single edge, that fromv to its parent. Thus(xPSd(x)
52c(v)11, so

pv5
2c~v !11

2N23
.

This formula is also valid ifc51.
Let us writent(c) for the number of vertices inTt having

c descendants. Forc>1 the number of such vertices inTN is
the same as inTN21 unless either vertexN becomes a de
scendant of an existing vertex withc descendants, or verte
N becomes a descendant of an existing vertex withc21
descendants. The former event has probability@(2c
11)/(2N23)#nN21(c), and the latter probability„@2(c
21)11#/(2N23)…nN21(c21). Thus, forc>1,

E„nN~c!uTN21…5nN21~c!2
2c11

2N23
nN21~c!

1
2c21

2N23
nN21~c21!.

Writing lN,c for E„nN(c)… and taking the expectation of bot
sides of the equation above, we find that

lN,c5lN21,c2
2c11

2N23
lN21,c1

2c21

2N23
lN21,c21 .

For c50 the only difference is that the new vertex alwa
has 0 descendants, so

lN,05lN21,02
1

2N23
lN21,011.
03611
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Together with the boundary conditions thatl1,c50 for c
>1 andl1,051, the above equations easily imply that

lN,c5
2N21

~2c11!~2c13!
~2!

for c<N22, while lN,N2151 ~at time N the root hasN
21 descendants! andlN,c50 for c>N.

Fixing N and varyingc, Eq. ~2! gives theload scalingin
the scale-free treeTN : the expected proportion of vertice
having exactlyc descendants, and hence load approximat
cN, is exactly

221/N

~2c11!~2c13!

for 0<c<N22. This gives a much more precise version
the inverse square power-law described in@6#; the heuristic
derivation used there gives only the asymptotic form ac
→`, since vertices far enough down in the tree that
average branching factor is less than one are omitted. S
such vertices are a constant proportion of all vertices, t
must be included to obtain the exact formula given abov

Note that the exponent of 2 is the same as that given w
a heuristic derivation in@13#, rather than the value'2.2
originally suggested by some of the same authors in@12#. It
is also clear that theN1.8logN scaling suggested in@12# for
the load of the root is not correct for this model, and that
correct answer isQ(N2): with constant probability the ver
tices 2 and 3 are each joined directly to the root, and
average each hasQ(N) descendants, giving orderN2 paths
passing through the root.

IV. SHORTEST PATHS

We now turn to the main topic of this paper, the distrib
tion of the distances between vertices, i.e., the distribution
the lengths of the (2

N) paths inTN . ~As TN is a tree, every
path is the shortest path between its end vertices.! As for load
scaling, this distribution is studied heuristically by Szab´,
Alava, and Kerte´sz in @6# using the mean-field approxima
tion. It is stated in@6# that the distribution of distances inTN
had previously been analyzed precisely; in fact this is not
case. As we have noted in the Introduction, the random
TN , i.e., the casem51 of the Baraba´si-Albert model, is
nothing other than a random plane-oriented recursive tree
‘‘nonuniform random recursive tree’’ as previously studied
@5,10,11,14#, among other papers. This has very differe
properties from auniformrandom recursive tree, where the
is no preferential attachment. The references given in@6# are
indeed to rigorous studies of certain properties of rand
recursive trees. However, one,@15#, deals entirely with the
uniform case, while another,@16#, gives for the nonuniform
case only the distribution of distances from the root.~This
distribution was given earlier in@10#.! The reference@14# for
the diameter~meaningmaximumlength of a shortest path, a
is usual in graph theory, as opposed toaveragelength! is
essentially correct; this paper shows that the height of
tree ~largest distance from the root! is almost certainly@1
4-3
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1o(1)#(2g)21 logN for g the solution ofge11g51. It is easy
to see that the method gives the diameter as@1
1o(1)#g21 logN. Note that this valueg2153.591... is dif-
ferent from the incorrect value 11&/251.707... given in
@6#. The difference is actually not from the mean-field a
proximation, which turns out to give the right answer, usi
the method suggested in@6#. The mistake in@6# is to use the
normal approximation@their Eq.~7!# to their Eq.~6!, which
is not valid this far out, and to forget to multiply by two.

Concerning the distribution of distances, despite the st
ment in @6#, to the best of our knowledge the distribution
distances inTN , the casem51 of the BA model, has no
previously been rigorously determined.

Here we shall give a~cumbersome! exact formula for the
expected number of paths of lengthk for anyk, and a simple
description of the distribution on two scales, one giving t
asymptotic form of the central part of the distribution, i
cluding almost all paths, and one the rate~and form! of de-
cay of the tails. Let us writeEk5Ek(N) for the expected
number of ~shortest! paths in TN of length k, so
(k51

` Ek(N)5(2
N).

Theorem 1. Suppose thatk5k(N) is such thata5a(N)
5k/ logN is bounded above and below by constants stric
between 0 ande. Then

Ek5Q~N11a log~e/a!/AlogN !, ~3!

as N→`. Furthermore, if k5 logN1xAlogN where x
5x(N)5o(AlogN), then

Ek;
N2

2

1

A2p logN
e2x2/2, ~4!

asN→`.
Note that the second statement says that the distribu

of path lengths is asymptotically normal with mean and va
ance logN. Our main tool will be a result from@3#, based on
the work in @7#, giving the exact probability that a give
graphS is present as a subgraph ofTN . Here we mean tha
the specific edges inS occur in TN , not thatTN contains a
subgraph isomorphic toS. Although the result and its proo
are simple, stating the result requires some definitions.

Let S be any graph onV5$1,2,...,N% which could possi-
bly occur as a subgraph ofTN . Thus, inS, every vertexj is
joined to at most one ‘‘earlier’’ vertexi, where i is earlier
thanj meansi , j . Considering each edgeij of Swith i , j as
oriented fromj to i, let V1(S) be the set of vertices sendin
out at least one edge, andV2(S) the set of vertices receiving
at least one edge. These sets are, of course, in genera
disjoint. Furthermore, fori PV2(S) let dS

in( i ) be the number
of edges ofS coming in toi. Finally, for 1<t<N let CS(t)
count the number of edgesij of S with i ,t and j >t. Then,
corollary 22 of @3# states that the probability thatS,TN is
given exactly by

pS5 )
i PV2~S!

dS
in~ i !! )

i PV1~S!

1

2i 23 )
t¹V1~S!

S 11
CS~ t !

2t23D .

~5!
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This result is the core of our proof of theorem 1. Most
the rest is a straightforward~but somewhat tedious! estima-
tion of the resulting sums.

Proof of Theorem 1. In the case of paths, which is all w
consider here, formula~5! simplifies somewhat: the only
paths P which may appear inTN are of the form
av1¯vscwt¯w1b, wherec is the last common ancestor o
a and b, andav1¯vsc and bw1¯wtc are paths down the
tree, so, for example,a.v1.¯.vs.c. ~Here we adopt
the nonstandard convention that the root of a tree is at
bottom.! We shall assume without loss of generality thata
,b. Note thatc<a, with c5a possible. To apply Eq.~5! it
is convenient to regroup the vertices ofP, writing V(P)
5$c%øLø$a%øRø$b%, whereL is the set of verticesv of
P with c,v,a, andR the set witha,v,b. Every vertex
of P has in-degree 0 or 1 exceptc, which has in-degree 2~if
aÞc). Also, CP(t), the number of edges ofP from vertices
before t to t and vertices after, is 2 ifc,t<a, 1 if a,t
<b, and zero otherwise. Hence, providedc,a, the prob-
ability that P is present inTN is

pP5p~a,b,c,L,R!

52 )
i P$a,b%øLøR\$c%

1

2i 23 )
c,t,a,t¹L

2t21

2t23

3 )
a,t,b,t¹R

2t22

2t23
.

This can be rewritten as

p~a,b,c,L,R!52 )
c,t<a

2t21

2t23

1

2a21 )
i PL

1

2i 21

3 )
a,t<b

2t22

2t23

1

2b22 )
i PR

1

2i 22
. ~6!

~The scope of each product is the fraction immediately f
lowing it.! If a5c then the initial 2 and the factor 1/(2a
21) must be omitted, asc has in degree one, anda
5c¹V1(P). Note that the pathP is not quite specified bya,
b, c, L andR: in P each vertex inR must lie on the subpath
from c to b, but each vertex inL may be on either this
subpath, or the one fromc to a. Thus, not that it is very
useful, we have the following exact formula for the expect
numberEk of paths of lengthk in TN :

Ek5 (
1<c,a,b<N

( 2uLup~a,b,c,L,R!

1 (
1<a,b

(
R,$a11,...,b21%,uRu5k21

p~a,b,a,B,R!,

where the second sum in the first term is over all pairs~L,R!
with L,$c11,...,a21%, R,$a11,...,b21% and uLøRu5k
22.

We now aim to find simple descriptions of the distributio
of shortest path lengths at various scales. Until the end of
proof we fix a small positivee. We shall be prepared to
4-4
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ignore multiplicative errors smaller than 11e in Ek , as well
as absolute errors smaller thanN11e. In particular, for anyk
we shall ignore the at mostN paths inTN of length k for
which c5a. ~There is at most one such path downward
the tree from each upper endvertexb.! Thus we have

Ek5 (
1<c,a,b

(
L,R

2uLup~a,b,c,L,R!1O~N!,

with the same conditions onL andR as before. Now in the
formula ~6! the first product telescopes, and is just (2a
21)/(2c21). The third product does not telescope, but
equal toAb/a„11O(1/a)…. Thus if a>Ne, c,a and uRu
5O(logN) then

p~a,b,c,L,R!;2
2a21

2c21

1

2a21

3)
i PL

1

2i 21
Ab/a

1

2b22 )
i PR

1

2i 22

;
1

~2c21!Aab
)
i PL

1

2i 21 )
i PR

1

2i 22
.

As there are onlyO(N11e) paths witha<Ne or with b
2a<Ne, we can consider only terms witha, b2a.Ne. We
are only interested in the range wherek5Q(logN), sinceTN
has diameterO(logN), and there are very few paths o
lengtho(logN). It follows that we need only consider term
in the sum wherec5O(1). In fact, from the form of the
sums involved, the contribution toEk from terms with in-
creasing values ofc decreases exponentially asc increases;
we shall return to this later.

From now on we only consider terms with 1<c,a,b
wherea, b2a.Ne andc is at most some sufficiently larg
constantC. We write(* for sums over such triples. We als
assume thatk5Q(logN). As noted above, we then have

Ek;(
* 1

~2c21!Aab
(

k11k25k22
2k1

3 (
L,$c11,...,a21%,uLu5k1

)
i PL

1

2i 21

3 (
R,$a11,...,b21%,uRu5k2

)
i PR

1

2i 22
1O~N11e!.

It is easy to see that

(
R,$a11,...,b21%,uRu5k2

)
i PR

1

2i 22

;
1

k2! S (
i 5a11

b21
1

2i 22D k2

;
@ log~b/a!#k2

2k2k2!
,

since k25O(logN), so when the power of the sum is e
panded the terms which are products of distinct summa
dominate.
03611
ds

The corresponding term forL is a little trickier to handle:
since c5O(1), a fraction Q(1/logN) of the sum
( i 5c11

a21 @1/(2i 21)# comes from each of the first few term
When we raise this sum to a powerQ(logN) this means that
a constant fraction of the result comes from repeated ter
In particular, we see that

(
L,$c11,...,a21%,uLu5k1

)
i PL

1

2i 21

5h1

1

k1! S (
i 5c11

a21
1

2i 21D k1

5h2

@ log~a/c!#k1

2k1k1!
,

where the ‘‘error factors’’h j are functions ofc, a and k1 ,
and usinga.Ne, c5O(1), andk15O(logN) we haveh1 ,
h25Q(1).

The approximation above is more than enough to give
first result. Indeed, combining the formulas above,

Ek;(
* 1

~2c21!Aab
(

k11k25k22
h2

3
@ log~b/a!#k2@2 log~a/c!#k1

2k22k1!k2!
1O~N11e!. ~7!

Thus, recalling thath25Q(1), thebinomial theorem implies
that

Ek5QS (
* 1

cAab

@ log~ab/c2!#k22

2k~k22!! D 1O~N11e!.

The rest is a matter of straightforward calculation. Fixinga
andb, bounding the sum

(
1<c<C

@ log~ab/c2!#k22

c

above and below by suitable integrals, we see that this su
Q„@ log(ab)#k21/k…. Moreover, as log(ab) and k are both
Q(logn), terms with increasing values ofc decrease expo
nentially, providedc is not too large. This justifies our re
striction toc5O(1). We thus have

Ek5QS 1

2k~k21!! (
1<a,b<N

1

Aab
@ log~ab!#k21D

1O~N11e!.

Again the sum can be approximated within a constant fac
by an integral, namely by

NE
0

1E
0

1 @ log~N2xy!#k21

Axy
dxdy

5Q„N@ log~N2!#k21
…5Q„2kN~ logN!k21

…,

usingk5Q(logN). This gives
4-5
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Ek5QS N
~ logN!k21

~k21!! D1O~N11e!,

or, sincek5Q(logN),

Ek5QS N
~ logN!k

k! D1O~N11e!. ~8!

Using Stirling’s formula,

Ek5QX N

AlogN
S e logN

k D kC1O~N11e!.

Writing k5a logN, for 0,a,e, takinge small enough we
obtain

Ek5Q~N11a log~e/a!/AlogN!,

providing Eq.~3!.
Having proved Eq.~3!, we have shown that the bulk o

the distribution is at logN, i.e., thatall but o(N2) of the(2
N)

paths have length k; logN. One can check that fork in this
range, the error functionh25h2(c,a,k) satisfiesh2(c,a,k)
;h3(c, loga/logN), whereh3 is continuous in the secon
argument. Following through the calculation from Eq.~7! to
Eq. ~8!, one can check that the implicit constant in theQ~•!
notation in Eq.~8! is almost constant and so fork; logN we
have

Ek;hN
~ logN!k

k!
, ~9!

for some absolute constanth. Summing overk in the range
k; logN, we count almost all of the (2

N) paths, so

S N
2 D; (

k; log N
Ek;hN2.

Thush51/2. The formula given in Eq.~4! now follows from
Eq. ~9! using Stirling’s formula, for example. h

A. Comparison with heuristics

The distribution of shortest path lengths inTN is studied
by Szabo´, Alava, and Kerte´sz @6# using the mean-field ap
proximation. It turns out that this heuristic gives very go
results; unfortunately, only numerical results are given in@6#,
despite the impression given in the abstract, introduction
conclusions. In the body of the paper, the distribution
root-node distances is given, in greater generality. Using
~5! in @6#, i.e.,

b~ l !5
1

2

logN

l
, ~10!

whereb( l ) is the mean-field number of children of a verte
at distancel from the root, the approximation
03611
d
f
q.

n~ l !5Q~n1/2!S e logN

2~ l 21! D
l 21

~11!

is obtained for the number of vertices at distancel from the
root. This formula is~6! in @6#, specialized to the particula
model; in particular, we have substituted the valueQ(n1/2)
for b(0)5 l (1). It is also noted in@6# that the distribution is
asymptotically normal, with mean and variance logN/2
~again specializing the more general result toTN).

No corresponding formula is given in@6# for node-node
distances; indeed, it is stated that, in contrast to the root-n
distances, ‘‘Eq.~13! and the quantities it is constructed out
turn out to be too complex to handle without numerics
However, it is noted later that the main contribution aris
from paths passing through the root, leading to
‘‘convolution-type distribution.’’ This heuristic is a good one
nearly all paths pass very close to the root. In particu
asymptotic normality of the node-node distance distribut
does follow~heuristically, but this is a very strong heuristic!:
the convolution of two normal distributions is normal.

Actually, the heuristic goes much further: rather than u
the approximation~11!, starting from Eq.~10! we obtain

n~ l !5b~0!
~ logN/2! l 21

~ l 21!!
.

Since

(
r 1s5t

Ar

r !

As

s!
5

~A1A! t

t!

by the binomial theorem, this suggests by convolution t
the number of paths of lengthk will be given essentially by

Q~N!
~ logN!k

k!
.

@We ignore additive errors ofO(1) in the path length.# This
is more or less the form given in theorem 1, apart from
normalization. And if, as in@6#, one corrects the heuristic b
normalizing @the heuristic, together with the real value
b(0), suggests this should not be necessary, but it se
sensible anyway#, this agreement is very striking. Note, how
ever, that from the heuristic we have no idea how far
agreement will extend; from our precise work we see that
~heuristically constant! implicit constant in theQ notation in
theorem 1 does actually vary ask varies on the logN scale;
this is due to the fact that paths not passing through the
matter very much when looking at the much smaller numb
of very short paths, for example.
4-6
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B. General graphs

Let us conclude by very briefly considering the gene
casem>2 of the BA model, giving rise to a scale-free ra
dom graph that is not a tree. A precise version of this mo
the LCD model, was introduced in@7# ~see also@3#!, where it
was shown that form>2 the diameter is asymptoticall
logN/log logN rather than logN. Thus, as far as shortes
-

tic

03611
l

l,

paths are concerned, the general case behaves very d
ently from the tree casem51. The general case is likely to
be much harder to analyze precisely.
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